
A Hierarchical Approach to Model Web Query Interfaces for
Web Source Integration

Eduard C. Dragut
University of Illinois at Chicago
Computer Science Department

edragut@cs.uic.edu

Thomas Kabisch
Humboldt-Universität zu Berlin
Computer Science Department
kabisch@informatik.hu-berlin.de

Clement Yu
University of Illinois at Chicago
Computer Science Department

yu@cs.uic.edu

Ulf Leser
Humboldt-Universität zu Berlin
Computer Science Department
leser@informatik.hu-berlin.de

ABSTRACT
Much data in the Web is hidden behind Web query inter-
faces. In most cases the only means to “surface” the con-
tent of a Web database is by formulating complex queries
on such interfaces. Applications such as Deep Web crawling
and Web database integration require an automatic usage
of these interfaces. Therefore, an important problem to be
addressed is the automatic extraction of query interfaces
into an appropriate model. We hypothesize the existence
of a set of domain-independent “commonsense design rules”
that guides the creation of Web query interfaces. These rules
transform query interfaces into schema trees. In this pa-
per we describe a Web query interface extraction algorithm,
which combines HTML tokens and the geometric layout of
these tokens within a Web page. Tokens are classified into
several classes out of which the most significant ones are
text tokens and field tokens. A tree structure is derived
for text tokens using their geometric layout. Another tree
structure is derived for the field tokens. The hierarchical
representation of a query interface is obtained by iteratively
merging these two trees. Thus, we convert the extraction
problem into an integration problem. Our experiments show
the promise of our algorithm: it outperforms the previous
approaches on extracting query interfaces on about 6.5% in
accuracy as evaluated over three corpora with more than
500 Deep Web interfaces from 15 different domains.

1. INTRODUCTION
The Web has evolved into a data-rich repository con-

taining significant structured content. This content resides
mainly in Web databases that are also referred to as the Deep
Web. Recent surveys estimated millions of such sources [6,
16]. In order to obtain the contents of Web databases, a
user has to pose structured queries. These queries are for-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

mulated by filling in Web query interfaces with valid input
values. Common examples are job portals or the search for
cheap airline tickets. The interface in Figure 1, on the left,
is an example of a query interface for booking airline tickets.

With each application domain hosting a large and increas-
ing number of sources, it is unrealistic to expect the user to
probe each source individually. Consequently, significant re-
search effort has been devoted to enable a uniform access to
the large amount of data guarded by query interfaces. These
approaches include: clustering/classifying of Web databases
[2, 20], schema matching across a set of interfaces [10, 23, 4,
21], computation of unified interfaces for a given application
domain [8, 12], query translation between query interfaces
[11] and surfacing the Deep Web [1, 5, 22].

The success of these applications hinges upon two issues:
understanding Web databases and obtaining their data. Both
rely on a good understanding of Web query interfaces, be-
cause a query interface provides a glimpse into the schema of
the underlying database and is the main means to retrieve
data from the database. Besides identifying all its fields,
the understanding of a query interface includes: (1) group-
ing the fields into semantically connected sets, (2) tagging
fields and groups with their semantic roles and (3) annotat-
ing fields and groups with additional meta-information (e.g.
data type). Departure Date is an example of such a group
in Figure 1. Groups can form bigger building blocks on the
interface, e.g., the Departure Date and Return Date groups
form the block When Do You Want to Go?. Such grouping
naturally leads to a hierarchical representation of query in-
terfaces. Second, tagging assigns labels to fields and groups.
For instance, in our running example the text Adults is as-
signed as a label to the field Adults and the text Number

of Passengers is assigned to the group of fields Adults and
Children. Third, information such as data type and unit of
measurement must be determined.

The goal of this work is the development of an algorithm
that extracts and maps query interfaces into a hierarchical
representation.

Such an extraction is challenging because query interfaces
are represented in HTML, lack a formal specification and
are developed independently. HTML is a markup language,
designed for formatting documents and not to express data
structures and semantics. HTML has a rather loose gram-
mar and browsers do not enforce the grammar when display-
ing HTML pages. As a result, ill-written HTML pages can

often be displayed by browsers and used by people. Query
interface design seems rather heuristic in nature—there is
no clear guidance of how to create an interface. Interfaces
follow different design patterns (e.g., the orientation of la-
bels can vary—the fields in Figure 1 have the labels above
while the fields in Figure 2 have the labels to the left). Fur-
thermore, similarly looking interfaces can be developed with
different HTML constructs.

The main contribution of this paper is the development
and evaluation of a method that utilizes mainly the visual
content features of a Web query interface as displayed on a
browser. Query interfaces are represented as schema trees of
arbitrary depth. The extraction of a query interface into a
schema tree is guided by two main insights. First, we noticed
that certain geometrical patterns (horizontal/vertical lines)
can reveal the presence of semantically related fields in a
query interface. Second, by drawing a parallel between the
layout of documents and the appearance of user interfaces
we can further discover meaningful relationships among the
elements of a query interface.

Our specific contributions are the following:

• We define a small set of general rules that help in re-
engeneering query interfaces in a formal model with
high accuracy. Previous methods following a similar
line used a significantly larger number of heuristics
which carries the danger of overfitting (see Section 6).

• We use the visual arrangement of interface elements
(labels, fields, etc.) to determine semantically related
fields. This approach bypasses the intricacies of cod-
ing query interface in HTML. In contrast to previous
approaches using the visual layout of Web sites, we use
a much more expressive set of rules to exploit layout
information for interface extraction (see Section 4).

• We bundle the identified design rules and the knowl-
edge extracted from visual layout into a highly accu-
rate algorithm for automatically transforming query
interfaces into schema trees. These schema trees cover
much more information for Deep Web integration than
previous, “flat” models (see Section 5).

We prove the superiority of our method by an extensive
evaluation using more than 500 interfaces from 15 differ-
ent domains. Our method reaches an accuracy of 90% on
average, which is a 6.5% improvement over our closest com-
petitors (see Section 6.4).

Motivation for Hierarchical Representation
A main feature of our method is the representation of query
interfaces in a hierarchical format. We provide concrete ex-
amples of applications that utilize query interfaces and we
show how these applications would benefit from a hierarchi-
cal representation of query interfaces.

1. Query Interface Matching It was shown that match-
ing can be significantly improved when interfaces are repre-
sented hierarchically [23]. Among others, hierarchical repre-
sentation helps to avoid false matches due to the homonymy
problem and to identify complex matchings (e.g., is-a and
part-of relationships). An example of the former is pro-
vided by the label From in Figure 2 (left half) which is
used to denote both year and price. Unless the labels of
the internal nodes are considered, when matching the in-
terfaces in Figure 2, false matches may be derived, such as

Year.From=Price Range.From. By representing Web query
interfaces hierarchically additional schema matching tech-
niques can be applied [17, 7].

2. Building Unified Query Interfaces Recent work
[8, 9] has shown that integrated Web query interfaces gen-
erated from sources represented hierarchically are qualita-
tively better than the ones generated from sources having
a flat representation [12]. A user survey showed that inter-
faces generated from hierarchical representations are easy to
understand.

3. Deep Web Crawling The Deep Web crawling [1,
3, 5, 19] requires the understanding of query interfaces. A
crawler needs to input meaningful values into the fields of
query interfaces to retrieve the data from Web databases
[3]. We observed that a preorder traversal of the schema
tree of a query interface reflects the way a human being
parses the interface in order to understand the meaning of
the fields. For instance, in Figure 1 before a user reaches
the field From she first encounters the label Where Do You

Want to Go?. Thus she has an unambiguous understanding
of the meaning of the field From. A proper annotation of
the nodes of the schema tree of a query interface could help
a crawler to automatically understand the meaning of the
fields within the interface. The crawler can follow the same
preorder traversal that a human uses to parse the interface.

4. Another challenge to automatic understanding of query
interfaces is the presence of inter-related fields [5]. These
fields restrict the kind of queries that can be submitted to a
search engine. For example, in the left interface in Figure 2
the fields Make and Model are related. The selection of a
value in the field Make restricts the possible values shown in
the field Model. The problem faced by a crawler is determin-
ing those related fields from the cartesian product of fields.
The search space can be significantly reduced as such fields
are siblings in the hierarchical representation.

The rest of the paper is organized as follows. Section 2
shows related work and underlines the differences between
previous work and ours. Section 3 defines our understand-
ing of Web query interfaces. Section 4 exploits the main
idea of our approach and lays it down into 9 commonsense
design rules. Section 5 describes our extraction algorithm.
In Section 6 we present our experimental results. We give a
conclusion in Section 7.

2. RELATED WORK
Hierarchical Web interface models are an important step

toward a better integration of Web sources. We believe our
approach is unique in that it produces structured schema
trees which offer a rich set of information for integration
systems.

There have been a number of recent suggestions to im-
prove the extraction of Deep Web interfaces. The approaches
presented in [14, 19, 15] regard query interfaces as a flat col-
lection of fields. Consequently, the main problem addressed
is the prediction of the right label for a field. One frequently
used heuristic employed for prediction is the textual similar-
ity between the name of a field and a label. In the example
of Figure 1 the name of the field Adults is numAdults and
its label is Adults. Since numAdults and Adults share a
significant text portion their similarity score is high enough
to suggest that the latter is the label of the field. In our
initial effort, we implemented this heuristic as well, but we
noticed that its prediction accuracy is rather minute. More-

orig
From: City
or Airport
Code

aa.com

1. Where Do You
Want to Go?

2. When Do You
Want to Go?

3. Number of
Passengers

4. What are
Your Service
Preferences?

dest
To: City or
Airport
Code

Departure Date Return Date

dMonth dDay dTime rMonth rDay rTime

adult
Adults

child
Children

cabin
Class of
Service

stops
Number of
Connections

Figure 1: An example of an ordinary query interface in the airline domain along with its schema tree.

Herzogmeier

make:
MAKE

model:
MODEL/TYPE YEAR RANGE

miles:
Miles PRICE RANGE

minYear:
From:

maxYear:
To:

minPrice:
From:

maxPrice:
To:

Cohen's Auto Search

Year
make
Make

vType
Type

vFrom
From

vTo
To

Figure 2: Two query interfaces from the auto domain.

over, it is not able to discover labels for groups of fields
(internal nodes) since these do not have names/ids within
HTML pages. Subsequently this heuristic was dropped from
our implementation. Furthermore, a flat representation of
interface fields fails to properly represent the semantic rela-
tionships between them.

The approaches most related to ours, in that they also
view query interfaces as structured objects, are [24, 13]. [13]
uses attributes to group sets of related fields. For example,
the three fields denoting the departure date in the interface
in Figure 1 would be captured as one attribute, and the field
From on the same interface would be an example of an at-
tribute containing a single field. However, attributes cannot
be nested, and therefore this approach would fail to see that
the fields From and To should be grouped together and that
they can be semantically characterized by the label Where
Do You Want to Go?. Similarly, [24] proposes to use a form
of grouping fields, but is not capable of representing arbi-
trarily nested structures. In contrast, our fully hierarchical
approach describes Web interfaces as schema trees.

Another feature of our approach is the exploiting of visual
layout information for recovering the structure of an inter-
face and for assigning labels to fields. Most existing tools for
Web wrapping are based on HTML parsing instead. How-
ever, HTML is a rather fuzzy language with many ways to
express the same appearance. Especially with newer HTML
technologies (e.g. style sheets), the neighborhood of tags
and text in HTML is blurred completely and thus does not
provide robust clues for interface extraction. In contrast,
our method uses visual techniques to analyze Web pages and
thus is more robust against HTML particularities and code
evolution. The work most similar to our approach is [24]
which introduces the notion of viewing query interfaces as
visual languages. However, their extraction algorithm uses a
grammar with more than 80 productions that was manually
derived from a single corpus of 150 interfaces. When using
such a high number of very specific rules there is a probabil-

ity that the resulting system may overfit to the corpus the
rules were derived from [18]. Moreover the rules derived in
[24] reflect concrete patterns found on Web interfaces at the
time the system was developed. But the appearance of Web
interfaces evolves with new opportunities of the underlying
technology. Therefore, our algorithm is based on only 9 gen-
eral rules which are completely domain-independent and do
not rely on specific specific implementation issues.

3. REPRESENTATION OF QUERY INTER-
FACES

In this section, we present our way of modeling a query in-
terface. Methods for mapping a given Web query interface
into such a model are described in the rest of the paper.
Data in searchable databases are accessible through form-
based search interfaces (mostly HTML forms). The basic
building blocks for these forms are: text input boxes, selec-
tion lists, radio buttons and check boxes. We will generically
call them fields. A text input box is rendered as a empty
box with or without a default value. The Field From on the
interface in Figure 1 is such a field. A selection list presents
the user with a set of choices to select from. There are two
types of selection lists: single selection list (e.g. combo box)
and multiple selection list (e.g. listbox). Radio buttons and
check boxes are employed by designers to explicitly display
the choices to the user. For example, in Figure 1 the Class

of Services are shown as radio buttons. The difference
between radio buttons and check boxes is that choices are
exclusive in a radio button group, whereas multiple check
boxes may be selected at the same time. A radio button
group can be regarded as a single selection list and a group of
check boxes as a multiple selection list. For example, the set
of radio buttons denoting the class of service is treated as a
field (single selection list) whose label is Class of Service.
The labels attached to each individual radio button (e.g.
Economy with Restrictions) become the values of the se-

lection list field. To summarize, we have two types of fields:
fields with predefined sets of values and fields without pre-
defined values.

A field has a name, which identifies the field in the HTML
script (for programming purposes). Fields may also have
labels that describe to users the meaning of the field. Fields
may not have their own labels, rather they share a group
label with other fields. For instance, the three fields denoting
the departure date in Figure 1 do not have their own labels
but they share a group label. In some cases the label may be
entirely left out as the designer relies on the set of values of
the field to convey the semantics of the field. While names
are readily available from HTML, the assignment of labels
requires substantial work, but is necessary for the correct
understanding of the semantics of a field or group of fields.

An important aspect of user interfaces is a sort of spatial
locality property among the fields. That is, semantically re-
lated fields are usually grouped together in an interface. For
example, in the interface in Figure 1 the fields denoting the
types of passengers traveling are next to each other. More-
over, several related groups can further be grouped together.
In our interface the two groups of fields denoting departure
date and return date, respectively, are put together (When
Do You Want to Go?). Thus, this bottom-up characteriza-
tion gives rise to a hierarchical structure for interfaces. In
addition, each group of fields may have labels that describe
to the user what the group is about.

The hierarchical structure of query interfaces was first ob-
served by [23]. More in detail, a query interface is an ordered
tree of elements so that leaves correspond to the fields in the
interface, internal nodes correspond to groups of fields in
the interface, and the order among the sibling nodes within
the tree resembles the order of fields in the interface (this
is from left-to-right for documents in the western world).
This schema tree captures both the order semantics and the
nested grouping of the fields in a query interface. Figure 1
shows a typical example of a query interface in the airline
domain and its corresponding schema tree. Observe that
the schema tree has four levels and that each level except
for the root refines the information in the level above. The
first level is a generic root node (usually the root has the
name of the Web site).

Three more types of meta-information are attached to the
leaves (fields) and internal nodes (groups of fields): domain
type, default value and unit of measurement. Domain types
are of two kinds: simple and complex. Examples of the
former type are integer or string. Examples of the latter
type are date, time, datetime and currency. Complex do-
main types can be associated with a group of fields (e.g.
Departure Date in Figure 1 has the datetime domain type)
Many fields have default values, e.g., the fields denoting
month and day of the departure date in Figure 1. Frequently
a default value may appear in a text box. As shown in [5]
the default value of a text box may be a valuable indicator of
the kind of input the field expects, since the domain type of
text boxes is difficult to determine in general. Units of mea-
surements such as “miles” and “square feet” are important
pieces of information that need to be properly extracted and
attached to the right field (group of fields). They frequently
appear abbreviated in query interfaces (eg. “mi” stands for
“miles”). The abbreviations are recognized by consulting
certain Web sites, e.g. www.abbreviations.com.

4. EXPLOITING DESIGN RULES
In this section, we describe our observation that almost

all real-life Web interfaces obey to a small set of rules that
partly determine their appearances. Although they appear
trivial in first place, we shall show in Sections 5.2, 5.3 and 5.4
that exploiting these rules enormously help in re-engineering
Web interfaces in a formal model.

Automatic extraction of query interfaces is challenging
because interfaces are created autonomously and with lan-
guages (e.g., HTML) obeying a loose grammar. The ques-
tion arises whether there is an inherent set of rules that
designers of query interfaces intuitively follow. Our inves-
tigation of a reasonable large number of query interfaces in
various domains showed that a small set of commonsense
design rules emerges from heterogeneous query interfaces.
We first enumerate the rules and then motivate them by
drawing a parallel between documents and query interfaces.

Except for Rule 0 and 6, all the other are new, and not
encountered in any of the previous extraction techniques.
This is of no surprise since none of them have the concepts
of groups and subgroups.

• Rule 0: Query interfaces are organized top-down and
left-to-right.

• Rule 1: Fields within an interface are organized in
semantic units of information, i.e. groups.

• Rule 2: A label is used to denote either the semantics
of a field or of a group of fields, but not both.

• Rule 3: If a field f with a label lf belongs to a group
g with label lg then the text-style of the label lf is
different from the text-style of label lg.

• Rule 4: If a group g with a label lg is a subgroup of a
group G with label lG then the text-style of the label
lg is different from the text-style of label lG.

• Rule 5: The labels of all the members of a group have
the same text-style.

• Rule 6: The orientation of a label of a field is either
to the left, above, right or below of the field. The label
of a group is either above or to the left of the group.

• Rule 7: The labels of all the members of a group have
the same orientation.

• Rule 8: Let G be a group and g be one of its sub-
groups. Suppose a label with text-style FS1 is assigned
to G and a label with a different text-style FS2 is as-
signed to g, then for any group H and its subgroup h
the label assigned to H cannot have the text-style FS2

when the label assigned to h has the text-style FS1.

The first two rules phrase rather obvious observations.
First, ordinary people expect the content of documents (Web
pages) to be laid out in a predicted pattern—i.e. top-down
and left-to-right. Second, the content of such a document
must be structured in some organic units so that it is easy
to understand—e.g., it would be rather peculiar to have the
fields denoting the departure date separated by some other
fields, such as the passenger fields. Rule 2 says that a label
cannot play multiple roles as this would confuse an ordinary
user.

 R0 R1 R2 R3 R4 R5 R6 R7 R8
80

85

90

95

100

C
on

fid
en

ce
 in

 %

Figure 3: Histogram of rule confidence.

In a text document, such as this paper, headings are em-
ployed to organize the content of the document. Headings
are located at the top of sections and subsections which
they delimit. Headings serve several important roles in doc-
uments: they preview and succinctly summarize upcoming
content and they show subordination. They naturally lead
to a hierarchical structure for a document.

In many ways a Web query interface can be regarded as a
document: its fields along with their labels are the content
and the labels of the groups are the headings. A label of
a group of fields, similarly to a heading, should succinctly
summarize the upcoming set of fields. For example, the label
Where Do You Want to Go?, in Figure 1, describes the pur-
pose of the fields in the section it introduces. A user, thus,
learns that the fields From and To represent the departure
and arrival information, respectively.

A set of heuristics emerges from the parallel between query
interfaces and documents. The text-style of a heading is dif-
ferent from the text-style of the content. Likewise, the label
of a field has a distinct text-style than that of a label of a
group of fields (Rule 3). The text-style of a heading is dif-
ferent than that of its subheadings; similarly, the text-style
of the label of a group is distinct from that of the label of
its subgroup (Rule 4). Headings at the same depth in the
document hierarchy have the same text-style and labels de-
noting sections at the same depth of a query interface have
the same text-style (Rule 5). The subheadings of a heading
have all the same alignment (e.g., left, center). Likewise,
the labels of the members of a group have the same orienta-
tion (Rule 7). If a text-style is chosen for a heading H and
a different text-style is chosen for its subheading h, there
must be no other subheading having the text-style of H and
moreover there must not be a sibling heading of H having
the same text-style as h. If this rule is translated to the
labels in a query interface, Rule 8 is reached.

We conducted an informal survey of these rules. The ICQ
dataset was used. (The datasets used in this work are de-
scribed in Section 6.) The histogram in Figure 3 depicts
the outcome of our study. The survey reveals that there
are many similarities between the organization of a docu-
ment and that of a query interface. All the rules, except
for Rule 3, are satisfied by almost all query interfaces in the
dataset. Rule 3 is violated in 18% of all the interfaces. The
reason is that these interfaces use the same text-style for
the labels of fields as well as for the labels of groups. An
example is shown in Figure 2, the field-label Make utilizes
the same text-style as that of Year Range. We introduce a
heuristic to cope with such cases in Section 5.3.

The survey also shows that this set of rules holds across
diverse domains (ICQ has interfaces from five domains). It
implies that there are implicit conventions that influence the

 Figure 4: Fields and texts with bounding boxes.

design of Web query interfaces. Although there is not a com-
mon wisdom how to build an ideal query interface, the cre-
ative process is guided by the way most humans expect doc-
uments to be laid out. People in the western world read from
left to write and top to bottom. Furthermore, objects re-
ferred throughout a document are a priori defined. A group
of fields (section) on a query interface can be regarded as
such an object and its label as its definition. Consequently,
when humans visually parse query interfaces they expect to
encounter the label before the group (section). These rules
act as axioms to build the data structures employed in the
extraction algorithm.

The set of rules is by no means universal. It is our con-
tention that the rules can be easily adapted to accommodate
query interfaces developed for people speaking languages fol-
lowing other orientation patterns. We manually inspected
query interfaces intended for Arabic languages. We observed
that these interfaces are organized from right to left and top-
down. For these interfaces, one only needs to swap “left”
with “right” in the commonsense rules.

5. THE EXTRACTION ALGORITHM

5.1 Overview
First we give a high level description of the steps of the

algorithm. Each but the first step is explained in detail in
the following sections. These are the steps of the algorithm:

Token Extraction: An HTML Page is input into a ren-
dering engine of a browser (e.g. IE). A list of tokens is
extracted from it. A token is an atomic visible element on
the page. The token list is cleaned and filtered. There are
three types of tokens considered: text tokens, field tokens
and image tokens. Each token is enclosed in a rectangular
area that describes the layout coordinates of the token in
the actual window frame. This area is called bounding box.
For example, in Figure 4, Departure Date is a text token,
the field showing the value Feb is a field token and there is
no image token.

Tree of Fields: An initial tree of fields, called FT , will
be generated based on the order and alignment of the fields
in the rendered version of the interface. Fields and groups
correspond to leaves and to internal nodes, respectively, in
the tree. Additionally, a set of candidate labels is deter-
mined for each field. The tree in Figure 5 represents FT
derived from the interface in Figure 1.

Tree of Text Tokens: We hypothesize that a text token
in an interface has a semantic scope. Intuitively, this is the
area of the interface which is characterized by the semantic
meaning of the text token. As an example, the semantic
scope of When Do You Want to Go? is the rectangular area
that includes every text token and fields that are between the
text token itself and the text token Number of Passengers

(Figure 6). The semantic scope of Departure Date includes
the text token and the three fields denoting month, day and
time of departure. The tree of text tokens, called TT , is
inferred from the inclusion relationship between the rectan-
gular areas defining the semantic scopes of text tokens (e.g.,
the semantic scope of When Do You Want to Go? includes

child cabin stopsorig dest dMonth dDay dTime rMonth rDay rTime adult

a

root

c db e

Figure 5: Tree of fields.

that of Departure Date, thus the latter text token is a child
of the former text token). The tree in Figure 7 represents
the tree of text tokens derived from the interface in Figure 1.

Label Scope
 first Level

Label Scope
second Level

Figure 6: Semantic scopes of text tokens.

Integration: The final hierarchical representation ST
(schema tree) of the interface is obtained by merging the
two trees FT and TT . FT is the target tree and TT is
the source tree. A directional “mapping” from TT to TF
is defined. A label is mapped into a leaf (field) if it was de-
termined to be a candidate label. The semantic scope of a
label l contains a set fields (leaves). A label is mapped into
an internal node if its semantic scope contains all the fields
of the internal node. Multiple labels may be mapped into
each node of the tree. New internal nodes may be added to
the tree of fields FT . The goal of this step is to find the final
schema tree and the assignment of labels to its nodes. For
our running example, the final schema tree ST is depicted
in Figure 1, on the right.

5.2 The Tree of Fields
This section describes the methodology for the construc-

tion of the tree of fields of a query interface. Recall that
the main goal is to infer the “hidden” schema tree structure
of a Web query interface. Two issues need to be addressed.
First, given that the schema tree of a query interface is an or-
dered tree, the problem is finding the semantic order of the
fields on a query interface. The semantic order of the fields
in a query interface is the order in which a user reads and fills
in the fields. On our running example (Figure 1), the seman-
tic order of the fields is From, To, Departure Month,...,

Number of Connections. The second problem is the group-
ing of related fields. The third problem is the assignment of
candidate labels to the leaves of the schema tree.

Semantic Order of Fields
For each field a tabindex attribute can be set in HTML.
The tabbing order defines the order in which elements re-
ceive focus when navigated by the user via the keyboard.
Designers may employ this attribute to specify the fill in or-
der of fields in a query interface. This attribute is scarcely
used. Only 10 out of 100 interfaces in the ICQ dataset utilize
it. The question remains, whether there is any other way
to infer the fill in order of the fields when the tabindex is
not specified for the fields. Our empirical study shows that
the order in which the fields are encountered in the source

code usually coincides with the fill in order. This is also
the strategy employed by the rendering engines of browsers.
The explanation is that, while developing Web query inter-
faces, designers place fields in the HTML source code in the
order the user parses them. To conclude, whenever tabindex
is encountered in a Web query interface we use it to deter-
mine the semantic order of fields and when it is not present
we utilize the order the rendering engine provides.

Grouping of Related Fields
Although the HTML language and its add-ons have some
constructs (e.g. <fieldset>) that could be used to empha-
size certain grouping of fields in a HTML page, which in
turn could be employed to infer the hierarchical structure,
our experience with real world Web query interfaces shows
that these constructs are sparsely found within the source
code of Web pages. (Designers are mostly interested in the
layout of their products rather than in their semantic anno-
tations). But, are there any other layout hints that could
be employed to infer groupings of fields?

P Q
O

NM

LKAA

D

B

C

Figure 8: Semantic order and inflection points.

We noticed the following geometric pattern for Web query
interfaces. If straight line segments are drawn between any
two consecutive fields in the semantic order, then all these
line segments form one connected curve. The curve consists
of horizontal, vertical and diagonal line segments. A hori-
zontal (vertical) line segment corresponds to a set of fields
laid out row-wise (column-wise) on the visual rendering of
the query interface. Figure 8 (left half) shows the curve for
a fragment of the interface in Figure 1. The curve may also
have a number of inflection points. An inflection point is a
point on a curve where the curve changes from being concave
upwards (positive curvature) to concave downwards (nega-
tive curvature), or vice versa. Thus, in our case, an inflection
point is a point where two non-parallel line segments meet.
An inflection point marks either the end or the beginning of
a semantic group of fields in the interface. For instance, in
Figure 8 (left half) inflection point B marks the end of the
group of fields From and To and point C marks the beginning
of the semantic group Departure Date. An inflection point
is the geometric “evidence” that the designer finishes/begins
the organization of a subset of fields into a group of semanti-
cally related fields. Hence, a horizontal/vertical line segment
emphasizes the presence of a group of fields. For example,

1. Where Do You Want to Go? 2. When Do You Want to Go? 3. Number of Passengers 4. What are Your Service Preferences?

From: City or Airport Code To: City or Airport Code Departure Date Return Date Adults Children

labelroot

Class of Service Number of Connections

Maximum 6 passengers...

Figure 7: Tree of text tokens.

 blind corner sector field scope sector

C3 C4SB

ST

SRSL

C2C1

Figure 9: Exemplified field scopes.

the line segment [C, D] denotes the group Departure Date

while the vertical line segment [O, P] in the right half of
Figure 8 represents the group Number of Passengers.

Once the groups of fields have been determined, the tree
of fields is constructed bottom up as follows. We start with
a flat tree—all fields are children of the root and ordered
from left to right according to their semantic order. Then,
an internal node is added to the tree for each determined
group of fields. Figure 5 shows the derived tree of fields for
the running example (e.g., an internal node was added for
the groups of fields From and To).

There is one more issue to be addressed: Can a field be-
long to multiple groups of fields? In our geometric interpre-
tation this corresponds to an inflection point that joins a
horizontal with a vertical line segment. On such an occur-
rence the field is assigned to the group corresponding to the
horizontal line segment since the fields on query interfaces
are mostly row-wise organized.

Candidate Labels for Fields
Another important problem in the construction of the schema
tree is the semantic tagging of its leaves (fields) and inter-
nal nodes (group of fields). There is no consistent pattern
across query interfaces as to where a label is positioned with
respect to the field it defines. A label may be to the left, to
the right, above or below of the field. This enumeration is
the order of places a label is most likely to appear for a field.
One may choose to assign labels according to this prioritiza-
tion. This is the strategy employed by [24, 13], but it is not
generic and leads to errors. Our strategy instead is to collect
first all possible candidate labels for each field and then, in
a later step (integration, see Section 5.4), to decide which
are the appropriate ones. More in detail, first, for each field,
a set of candidate labels is found from all text tokens, us-
ing Rule 6. This reduces the set of text tokens which are
possible labels for the field. Then, the groups of fields are
computed. Afterward, a text token is chosen from the set of
candidate labels as the final label, if it satisfies Rules 5 and
7. These steps are applied iteratively, as whenever a final
label is determined for a field, the set of candidate labels for
every other field or group of fields is updated (Rule 2).

We now consider the possible locations where the label

of a field should be placed with respect to the rectangular
box enclosing the field. This is called the scope of the field.
The space around a field is partitioned into 8 sectors by the
vertical and horizontal lines going through the top-left and
bottom-right corner points of the bounding box of the field.
Figure 9 shows the sectors around the field Children (the
combo box having the value 0 selected). The corner sec-
tors, marked with C1 to C4 in the figure, are called blind
spots, because the label of a field cannot reside entirely in
those areas. If the label were entirely in one of these sec-
tors, then between the label and the field would be a di-
agonal relationship. This would be a violation of the com-
mon sense Rule 0, that information is organized top-down
and left-to-right. The four sectors, denoted ST (top sec-
tor), SL (left sector), SR (right sector) and SB (bottom
sector) constitute the scope of the field. A candidate label
must lie in one of these four areas, although it might ex-
tend into a blind spot. For example, the scope of the field
Children is the shaded area in Figure 9. Each sector is a
bounded rectangular area. Each sector starts at the bound-
ing box of the field and stretches in one of the four direc-
tions (e.g., top sector stretches upward) until the bounding
box of another field or the boundary of the interface is met.
A candidate label is a text token whose bounding box in-
tersects the scope of the field. For each sector an ordered
list of candidate labels is computed. The order is given by
the distance between the field bounding box and the candi-
date label bounding box. In our example, the left and right
lists of candidate labels of the field Children are empty.
The top list consists of Children, Maximum 6 passengers

per reservation and Number of Passengers. The bottom
list consist of What are Your Service Preferences? and
Class of Service.

5.3 The Tree of Text Tokens
The second piece of information employed for determining

the hierarchical structure of a query interface is the layout
relationship between text tokens, which is covered in this
section. We distinguish between text tokens and labels. The
former refers to any text appearing in a query interface, e.g.,
comments. The latter is a text token that was identified to
be the semantic tagger of a field or a group of fields.

The hierarchical structure of headings is easy to extract
for documents because headings are explicitly tagged. The
labels in Web query interfaces lack such tagging, thus the
problem of their hierarchical subordination is harder. Nev-
ertheless, using the analogy between headings and the labels
assigned to a group of fields, a technique can be designed.
There are two main observations. First, headings at the
same depth in the heading hierarchy of a document have the
same text-style. Consequently, we expect that the labels as-
signed to the groups at the same depth in the schema tree of
query interface to have the same text-style (Rule 5). Thus,
the first task is to cluster/classify the text tokens appear-
ing on a query interface based on their text-style properties.

Second, for any two headings H and h, with h subheading
of H, the content area covered by h is a subset of that of H.
So, if we knew the (semantic) area each label covered on the
interface then the hierarchical subordination relationship be-
tween the labels in a query interface could be determined by
using the inclusion relationship. We show how the seman-
tic areas of text tokens are estimated and used to infer the
hierarchical relationship between them in this section.

Clustering of Text Tokens
Each text token has a complex style attribute, which de-
scribes its layout properties: font-color, background-color,
font-size, font-style, font-weight and font-family. The prop-
erties are retrieved from the rendering engine of a browser.
The text tokens with the same values for their style proper-
ties are clustered together. For our running example (Fig-
ure 1), there are three clusters of text tokens:
C1 = { Where do you want to go?, When..., ...};
C2 = { From, To, Departure Date, ...};
C3 = { Maximum 6 passengers per reservation, ...}.

Semantic Scopes of Text Tokens
Since the relationships between a label l of a group of fields
and the objects it characterizes are not explicitly given in
the HTML source code, we hypothesize that the semantics
of l summarizes a (rectangular) area on the visual rendering
of the interface. Thus, any object in this area is semantically
described by the label.

The semantic scope of a text token t, denoted scope(t), is
the maximal rectangle with the following properties:

1. Its left-upper corner coordinates are the coordinates of
the left-upper corner of the the bounding box of text
token t.

2. It extends downward and to the right until the seman-
tic scope of another text token p in the same style
cluster or the boundary of the interface is met.

3. Let q be a text token from a different style cluster than
that of t. If the bounding box of t is included in the
semantic scope of q then the semantic scope of t is
included in the semantic scope of q.

The semantic scope of the text token Departure Date

(Figure 6) starts at the left-upper corner of the bounding
box of the text token and continues downwards until text
token Return Date is met and to the right until the bound-
ary of the interface. Its semantic scope is included by the se-
mantic scope of the text token When Do You Want to Go?,
because its bounding box is inside the semantic scope of
When Do You Want to Go?.

In order to estimate the semantic scope of a text token t
on the visual rendering of a query interface we need to know
the text tokens of the same text-style “closest” to it in either
rightward or downward directions. We call them rightward
neighbor, tr, and downward neighbor, td, respectively. The
boundary of the semantic scope of t is computed with respect
to its neighbor text tokens or the boundary of the interface.
Denote by T the set of text tokens of the same text style
as that of t in a given query interface. The expressions
below define tr and td, respectively. The left-upper and
right-bottom coordinates of the bounding box of a text token

Algorithm 1 ComputeTokenTree(WF, root)

Input: current window frame WF
Output: the root of the tree of tokens

topT = ComputeTopLevelTokenSet(WF, root);
for all t ∈ topT do

create node nodet for token t;
root.addChild(nodet);
scopet = getSemanticScope(t, WF);
ComputeTokenTree(scopet, nodet);

end for

p ∈ T are (p.X1, p.Y1) and (p.X2, p.Y2), respectively.

tr = min
p.X1
{p|p ∈ T ∧ p.X1 > t.X2 ∧ p.Y1 > t.Y1} (1)

td = min
p.Y1
{p|p ∈ T ∧ p.Y1 > t.Y2 ∧ p.X2 > t.X1} (2)

Equation 1 says that from the set of all text tokens in the
same style cluster as t that reside to the right of t and are not
above of it, the text token with the smallest X1-coordinate is
the rightward neighbor. In a similar way, Equation 2 defines
the downward neighbor. It is possible that the boundary of
the interface is met, a small adjustment is made to each
equation. In our running example, the downward neigh-
bor of the text token When Do You Want to Go? is the text
token Number of Passengers (Figure 1) and the rightward
neighbor is the right boundary of the interface.

Having these concepts defined we can provide the algo-
rithm for the computation of semantic scopes and of the
tree of labels. The algorithm for computing the hierarchical
relationship between text tokens is depicted in Algorithm 1.
The algorithm is a recursive algorithm. The input of the
algorithm consists of the current rectangular window frame
WF on the visual rendering of a query interface. The out-
put is the root (artificially created) of the tree of text tokens.
The algorithm is initially called with the window frame of
the entire query interface. In the current window frame, the
algorithm first retrieves the set of text tokens topT in the
same style cluster satisfying the properties: (1) the union
of their semantic scopes covers the entire set of fields in the
current window frame and (2) it is the smallest set out of all
such sets of text tokens. This set of tokens is called top level
tokens. The procedure ComputeTopLevelTokenSet finds this
kind of tokens and is omitted here for brevity.

Then, for each token t in the set topT the following steps
are performed. First, token t is appended as a child to the
current root. Second, the semantic scope of token t is com-
puted using the neighbor text tokens of t, Equations 1 and
2 (procedure getSemanticScope). Third, the set of text to-
kens that are inside of the window frame defined by the
semantic scope of t is retrieved. Finally, the algorithm is
recursively called with the window frame defined by the se-
mantic scope of t. The recursive call terminates when there
are no text tokens topT in the current window frame.

We show how the tree of text tokens (Figure 7) for the run-
ning example is obtained by the algorithm ComputeTokenTree.
The initial window frame is the entire query interface. The
text tokens of each of the first two clusters C1, C2 cover all
the fields of the interface. The text tokens of cluster C3

do not cover fields such as the one with label From and are
therefore discarded. Since the cluster C1 has a smaller num-
ber of text tokens, its tokens become the first level of the

tree. Then, the semantic scope of each token in C1 is com-
puted. For example, the semantic scope of When Do You

Want to Go?, called SC, stretches all the way to the right
boundary of the interface and down to the token Number of

Passengers. SC includes the text tokens Departure Date,

Return Date. The algorithm recursively computes the se-
mantic scope of each of these two text tokens. The union
of the semantic scopes of Departure Date and Return Date

includes all the fields within SC. Therefore these text tokens
become the children of the text token When Do You Want to

Go?. Furthermore, the algorithm recursively goes into the
semantic scopes of these two text tokens. Since there are no
other text tokens in their scopes, this branch of the recursive
calls terminates. All other subtrees are obtained similarly.
The resulting tree is shown in Figure 7.

Adjustments
As shown in the histogram in Figure 3, Rule 3 is not

always satisfied. The main issue is that designers choose
to assign labels with the same text-style to both fields and
groups of fields. For instance, the labels for fields From and
To have the same style as the label Year in Figure 2 on the
right. The semantic scope of Year is “empty”, because its
rightward neighbor is From and its downward neighbor is the
boundary of the interface. Therefore, its scope contains no
field. To overcome this issue, we expand the semantic scope
of such a text token to the right and downward until one of
the following conditions (1) the next token with an empty
semantic scope, (2) a text token with at least two fields in its
scope or (3) the interface boundaries is met. The expanded
semantic scope of Year contains the fields with labels From

and To due to the satisfaction of (3).

5.4 Integration
Given the tree of fields FT (e.g., that in Figure 5), the

tree of text tokens TT (e.g. that in Figure 7) and the lists
of candidate labels for the fields of a Web query interface we
develop an algorithm to derive an integrated tree structure
that represents the schema tree of the interface ST (e.g.,
that in Figure 1). The body of the algorithm is given in
Algorithm 2. The tree of text tokens is used to determine
labels for the internal nodes (group of fields) of the schema
tree and to prune the initial candidate labels of fields as
determined in Section 5.2.

Using the semantic scopes of text tokens, the set of can-
didate labels of a field can be further pruned. If a field f
is within the semantic scope of some text token t, then any
candidate label for f is t, one of its descendent text tokens
or null. For example, in Figure 6 the field dTime (the first
field having default value Morning) cannot have the text
token When Do You Want to Go? as a candidate label from
its upward direction, because the field is within the semantic
scope of Departure Date and When Do You Want to Go? is
not a descendant of Departure Date. Similarly, candidate
labels of a field from the other directions can be pruned.

The labels for the fields are determined from the remain-
ing candidate labels. The algorithm first assigns those text
tokens as labels to fields that are explicitly specified by de-
signers in the HTML code (tag <label>), if such specifi-
cations exist. The algorithm also discards the text tokens
from the tree of tokens, whose semantic scope does not con-
tain any field. Then, the algorithm iteratively performs two
tasks. It assigns labels to leaves (fields) according to Rules 5
and 7. That is, the labels of the fields in a group have to

Algorithm 2 TreeIntegrator(FT , TT)

Input: Tree of fields FT , tree of labels TT
Output: Schema tree ST

ST = FT
prune candidate label sets of leaves in FT using TT ;
discard text tokens from TT whose semantic scopes con-
tain no fields;
assign text tokens to fields explicitly specified in HTML;
while no more changes to ST do

for all sets of sibling nodes in ST do
assign labels to leaves according to Rules 5 and 7;

end for
ST = doMerge(TT .root,ST);

end while
ST = postProcess(ST , TT);

be on the same side of the fields and to have the same text-
style. The algorithm may discover new groups of fields in
addition to those already found in the tree of fields and
assigns, whenever possible, labels to internal nodes. This
step is accomplished by procedure doMerge (Algorithm 3).
These steps are performed as long as there are changes to
the schema tree. There are two types of changes: new in-
ternal nodes are added to the schema tree ST (i.e., new
grouping of fields) or labels are assigned to the nodes in ST .

The schema tree may require additional adjustments. In
a final step, postProcess, the algorithm may further adjust
the structure of the tree and may assign additional text to-
kens to nodes. This step handles those fields which should
not form a group but are incorrectly placed within a group
in the tree of fields (described in Section 5.2). On some
interface, this is caused by fields which are grouped hori-
zontally by its designer for the sole purpose of optimizing
the space occupied by the interface on the Web page. We
observe that such a group on this kind of interfaces has the
following characteristics: it contains only two fields, does not
have labels and the interface is entirely constructed out of
such groups. The parent of these fields is removed from the
schema tree ST and the grandparent becomes their parent.

Procedure doMerge recursively integrates the tree of text
tokens into the tree of fields. The target tree is the tree of
fields and the source tree is the tree of labels. The initial
schema tree is the tree of fields. The output is the tree re-
sulted from the integration of the two trees. In a preorder
traversal of the tree of text tokens TT the algorithm per-
forms the following operations. A node v with text token F
in the tree of text tokens is mapped into a node lca of the
schema tree. The node lca represents the lowest common
ancestor of the set of fields contained in the semantic scope
of the text token F (procedures mapFieldList and getLCA).
Three cases are handled based on the relationship between
the set of descendent leaves Dlca of the node lca and the list
of fields, SF in the semantic scope of the token F represented
by node v. (i) If Dlca = SF , the text token F is assigned
as a candidate label to lca. (ii) If SF ⊂ Dlca and the fields
in SF are children of lca, then a new node is inserted in
the schema tree as a child of lca. The children of lca in
SF become children of the new node. (iii) If SF ⊂ Dlca

and and the fields in SF are not all children of lca, then
descendent leaves of lca in SF are reorganized. A new in-
ternal node is created and the set of fields in SF become its

Algorithm 3 doMerge(node,FT)

Input: the root of the tree of text tokens, schema tree ST
Output: integrated schema tree ST

V = node.getChildren;
for all v ∈ V do

F = mapFieldList(v);
lca = getLCA(F, ST);
Dlca = getDescendentLeafSet(lca);
if Dlca = F then

v candidate label for lca;
else

if all f ∈ F children of lca then
lca.appendChild(F);

else
w = lca.createChildInOrder(F);
w.addChildren(F);

end if
end if
doMerge(v,FT);

end for

children. The new node is inserted among the children of
lca such that the semantic order of the first field in SF is
preserved. Note that this reorganization of the leaves may
be inconsistent with the initial semantic order of the fields.
This occurs when the groups constructed from the semantic
order of fields are in contradiction with the groups suggested
by the semantic scopes of text tokens. As a rule of thumb,
whenever such a contradiction occurs, the semantic scope
of the label provides the intended way the fields should be
grouped.

The result of integrating the two trees in our running ex-
ample is shown in Figure 1, on the right.

Note that the schema tree produced by the algorithm
TreeIntegrator has the following property. If label lv is
assigned to node v and label lw is assigned to node w with v
an ancestor of w then label lv is an ancestor of lw in the tree
of text tokens TT . This result guarantees that Rules 4 and
8 are satisfied by the labels assigned to the groups and sub-
groups of fields in the final schema tree of a query interface.
A formal proof is omitted due to space constraints.

6. EXPERIMENTAL EVALUATION
We have implemented an operational prototype extrac-

tion system. We have conducted extensive experiments over
several domains of Web sources to evaluate our approach.
Our study intends to evaluate whether our solution can be
used for arbitrary application domains, ranging from simple
query interfaces to nested, multi-field forms, and whether it
substantially improves on previous work.

6.1 Datasets
Three datasets were considered:
ICQ dataset consists of query interfaces in five domains:

airline, automobiles, books, jobs, real estate. Each domain
has 20 query interfaces, so in total there are 100 interfaces.

Tel8 is the dataset employed in [24]. It consists of 487
query interfaces, of which we could use only 50% because
the others refer to no longer existing Web servers. For these
interfaces the browser either crashes or displays no page.
Interfaces are from eigth domains: airlines, auto, books, car

Leaves Internal Nodes Depth
Domain Avg Min Max Avg Min Max Avg Min Max
Airline 10.95 1 18 5.3 1 7 2.5 1 4
Automobiles 4.95 2 10 1.85 1 4 1.4 1 2
Books 5.45 1 12 1.85 1 5 1.45 1 2
Jobs 4.55 1 7 1.45 1 5 1.25 1 2
Real Estate 6.95 1 18 3.05 1 10 1.8 1 4
Overall 6.57 1 18 3.75 1 10 1.68 1 4

Figure 10: Characteristics of ICQ dataset.

Leaves Internal Nodes Depth
Domain Avg Min Max Avg Min Max Avg Min Max
Books 4.73 1 22 1.73 1 8 1.41 1 3
Electronics 5.71 1 14 1.79 1 4 1.36 1 2
Games 5.56 2 18 1.78 1 7 1.22 1 2
Movies 5.08 1 24 1.4 1 7 1.16 1 3
Music 4.12 1 11 1.2 1 3 1.16 1 2
Toys 5.13 3 6 1.25 1 3 1.13 1 2
Watches 6.85 1 25 1.77 1 5 1.38 1 2
Overall 5.08 1 11 1.57 1 8 1.29 1 3

Figure 11: Characteristics of WISE dataset.

rentals, hotels, jobs, movies and music records.
The ICQ and Tel8 datasets are publicly available1.
WISE is the dataset used in [13]. It consists of 147 in-

terfaces, out of these we were able to work with 134 due to
the same reason as mentioned for the Tel8 dataset. Inter-
faces come from seven domains: books, electronics, games.
movies, music, toys and watches. Overall, we evaluated our
approach on more than 500 web interfaces from 15 distinct
domains. Interfaces differ largely in terms of number of
fields, depth of nesting, layout etc. Figure 10 and Figure 11
give some figures on ICQ and WISE datasets.

6.2 Performance Metrics
We evaluated our algorithm according to different metrics,

concentrating on the difficult tasks in interface extraction.
In each metric, we compared a particular type of information
obtained automatically from our method with the “true”
information as defined in a gold standard. How these gold
standards were obtained is described below. The metrics
are:

Leaf Labeling: The problem of finding the right label
for leaves (fields) is difficult because labels are not explicitly
assigned to fields (as highlighted previously). We compute
the ratio of the number of correctly labeled fields to the total
number of fields (accuracy).

Schema Tree Structure: This measure aims to quan-
tify the distance between the structure of the extracted
schema tree and that of the ideal schema tree while ignor-
ing the labels assigned to the nodes. It shows how well
the groups of fields are identified and how accurate the se-
mantic order of fields is obtained. We use as measure the
structural tree edit distance which is the minimum number
of operations (insert, delete) to convert one tree into an-
other. The precision per interface is Ps = (Ne − Ds)/Ne,
where Ne is the number of nodes in the extracted tree and
Ds is the structural tree edit distance. The recall per inter-
face is Rs = (Ne −Ds)/Ni, where Ni refers to the number
of nodes in the gold standard tree. Finally, we compute
F-score Fs = 2PsRs/(Ps + Rs).

Overall Metric: This measure aims to quantify how
well the trees along with their labels are extracted. There-
fore, we use the tree edit distance, i.e., the minimum number
of operations (insert, delete and relabeling) to convert one

1
see the University of Illinois at Urbana Champaign Web Repository

http://metaquerier.cs.uiuc.edu/repository/

ICQ WISE
82

84

86

88

90

92

94

96

98

100

Field
Structure
Overall

Datasets

F-
S

co
re

 in
 %

Figure 12: Experimental results.

tree into another. Precision, recall and F-measure are de-
fined as above.

For the latter two metrics, we shall report the overall pre-
cision, recall and F-score obtained by averaging over all in-
terfaces in a dataset. Note that neither metric counts the
retrieval of domains, data types and default values, because
these are easily retrieved from the HTML code.

Gold standard. Our extracted results are compared
against gold standard interface representations. The ICQ
dataset already provides the gold standard. For the WISE
dataset, we manually constructed the gold standard. For
the Tel8 dataset, we only compare the extracted labels for
fields and groups (called conditions in Tel8) as specified in
its gold standard. Note that our algorithm actually identi-
fies many more important groupings, but these cannot be
evaluated directly on the Tel8 gold standard.

6.3 Evaluation of the Algorithm
Figure 12 summarizes the results of our experimental study

on the ICQ and WISE dataset. From left to right, the
bars represent the accuracy of retrieving the right labels for
fields, the F-score for the evaluation of the structure of the
schema trees and the overall F-score. The identification of
labels for leaves reaches 92% accuracy in both datasets. We
also achieve very high accuracy for the structural extraction
(>94%). Results for the overall measure are slightly worse
(87.5% for ICQ and 91% for WISE), which indicates that
sometimes labels for internal nodes are missed. The fre-
quency of this problem correlates with the accuracy of the
structural extraction. For instance, if the descendent nodes
of an internal node in the schema tree are not properly iden-
tified, the label for that internal node may be missed. Thus,
the differences in the performance between WISE and ICQ
can be boiled down to the differences in the structural accu-
racy which again depends on the complexity of the schemas
(see Figure 10 and 11).

We also ran the experiment for the Tel8 dataset. The
overall measure is 87.5%. Note however, that this number
gives only a partial impression of the performance of our
algorithm on this dataset because the gold standard offers
less information than extracted by our algorithm.

Evaluation of the Commonsense Rules. The pie
chart in Figure 13 shows the influence of the different rules
when being run on the ICQ set. Each slice represents the ra-
tio of the total number of times the rule was used to produce
labels over the total number of usages of any rule. Obviously,
all rules were necessary to achieve a proper result. Except
for Rules 1 and 6, the influence of the rules is roughly the
same, which suggests that this dataset contains a balanced
number of flat and hierarchical interfaces.

R1: 23%

R2: 7%

R3: 7%

R4: 7%
R5: 10%

R6: 36%

R7: 10%

Figure 13: Relevance of commonsense rules.

Efficiency of the Algorithm. We also evaluated the
efficiency of the system. The entire system has two parts,
rendering/loading the Web page and the extraction of the
query interface. While the rendering takes on average 4
seconds per Web page, the extraction itself is efficient; it
takes on average 1 second per user interface.

6.4 Comparison with Other Systems
We compared the performance of our method with that

of the WISE Extractor[13] and the system from [24] (abb.
as BEP: best effort parser)). Since the structures extracted
by the three algorithms can not be compared directly, we
resorted to a simpler evaluation by computing only the ac-
curacy for field and internal node extractions. This measure
was also used in [13, 24]. Note that it disregards the ability
of our tool to extract deeply nested structures.

WISE extractor. We thank the authors of [13] for shar-
ing code and dataset. We run WISE Extractor and our tool
on all three datasets. Figure 14 shows average results for
all datasets. Our tool on average is slightly better on the
WISE dataset, but much better on the other two sets: 90%
vs. 80% for ICQ, 88% vs. 82% for Tel8. Over all three
datasets, the difference in accuracy between our tool and
WISE extractor is 6.5% on average. Our explanation for
the poorer performance of WISE on Tel8 and ICQ is that
these datasets have more complicated interfaces (see Fig-
ure 10 and 11) than those in WISE dataset. For instance,
the airline domain has on average 5.3 internal nodes whereas
none of the domains in the WISE dataset exceeds on average
2 internal nodes. Furthermore, ICQ and Tel8 were collected
over several years. During this period, the HTML language
itself has evolved, which poses problems to parsing-based
techniques as the WISE Extractor is a parsing based tech-
nique. The tool is also unable to distinguish between visible
and invisible fields on a query interface. In comparison, our
visual technique is more resilient to language evolution and
does properly handle invisible elements.

BEP. We were not able to obtain the system described
in [24]. Consequently, we can only compare to the results
published in this paper, and only on the Tel8 dataset. We
obtain an overall accuracy of 88% whereas [24] reports an
accuracy of 85% [24]. Thus, although BEP uses a set of rules
that were directly derived from the dataset it was evaluated
on, our system - using a small and generic set of extraction
rules - outperforms this method on its own dataset.

7. CONCLUSION
We presented a technique for extracting hierarchical schema

trees from Deep Web interfaces. This representation is richer
and thus easier to be used for Deep Web integration than

Tel8 ICQ WISE
74

76

78

80

82

84

86

88

90

92

94

WISE
Extractor
Our Tool

Dataset

Ac
cu

ra
cy

 in
 %

Figure 14: Experimental comparison.

previous, flat models. Our extraction technique is based
on a small set of general design rules which, together with
a proper exploitation of visual layout of HTML pages, al-
low to extract schema trees with high accuracy. We showed
experimentally that our method outperforms previous ap-
proaches even if its capabilities for extracting structure are
disregarded.

Overall, we reach very high accuracy values over a wide
range of interfaces and domains. However, one can still
strive for improvements. We manually investigated those
interfaces where we performed poorly and found a number
of problematic situations. First, there are interfaces whose
labels are encoded in images. These interfaces account for
about 2% of the investigated query interfaces. Although
there are tools to extract text from an image (e.g. OCR)
our current implementation does not include them. About
1% of the interfaces have labels that are aligned to the cen-
ter and not to the left. The semantic scopes of this kind of
labels are wrongly computed. A number of query interfaces
(less than 1%) have a different semantic order than the fill-in
order which our algorithm expects. Many of the remaining
errors in the extraction process root in the preprocessing
step of the algorithm. For instance, during tokenization a
single text token obtained from the browser may contain the
labels for multiple fields.

Acknowledgements: This work is supported in part by
the United States National Science Foundation (NSF), grant
IIS-0414939, and by the German Academic Exchange Ser-
vice (DAAD), grant D0841421.

The authors would also like to express their gratitude to
the annonymous reviewers for providing helpful sugestions.

8. REFERENCES
[1] Luciano Barbosa and Juliana Freire. An adaptive

crawler for locating hidden web entry points. In
WWW, 2007.

[2] Luciano Barbosa and Juliana Freire. Combining
classifiers to identify online databases. In WWW,
2007.

[3] Andre Bergholz and Boris Chidlovskii. Crawling for
domain-specific hidden web resources. In WISE, 2003.

[4] Alexander Bilke and Felix Naumann. Schema
matching using duplicates. In ICDE, 2005.

[5] Michael J. Cafarella, Edward Chang, Andrew Fikes,
Alon Y. Halevy, Wilson C. Hsieh, Alberto Lerner,
Jayant Madhavan, and S. Muthukrishnan. Data
management projects at google. SIGMOD Record,
37(1), 2008.

[6] Kevin Chen-Chuan Chang, Bin He, Chengkai Li,
Mitesh Patel, and Zhen Zhang. Structured databases
on the web: observations and implications. SIGMOD
Rec., 33(3), 2004.

[7] Hong Hai Do and Erhard Rahm. Coma - a system for
flexible combination of schema matching approaches.
In VLDB, 2002.

[8] Eduard Dragut, Wensheng Wu, A. Prasad Sistla,
Clement T. Yu, and Weiyi Meng. Merging source
query interfaces on web databases. In ICDE, 2006.

[9] Eduard C. Dragut, Clement Yu, and Weiyi Meng.
Meaningful labeling of integrated query interfaces. In
VLDB, 2006.

[10] Bin He, Kevin Chen-Chuan Chang, and Jiawei Han.
Discovering complex matchings across web query
interfaces: a correlation mining approach. In KDD,
2004.

[11] Bin He, Zhen Zhang, and Kevin Chen-Chuan Chang.
Metaquerier: querying structured web sources
on-the-fly. In SIGMOD, 2005.

[12] Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu.
Automatic integration of web search interfaces with
wise-integrator. The VLDB Journal, 13(3), 2004.

[13] Hai He, Weiyi Meng, Clement T. Yu, and Zonghuan
Wu. Constructing interface schemas for search
interfaces of web databases. In WISE, 2005.

[14] Oliver Kaljuvee, Orkut Buyukkokten, Hector
Garcia-Molina, and Andreas Paepcke. Efficient web
form entry on pdas. In WWW, 2001.

[15] Nicholas Kushmerick. Learning to invoke web forms.
In CoopIS, DOA, and ODBASE 2003, 2003.

[16] Jayant Madhavan, Shawn R. Jeffery, Shirley Cohen,
Xin Dong, David Co, Cong Yu, and Alon Halevy.
Web-scale data integration: You can only afford to
pay as you go. In CIDR, 2007.

[17] Sergey Melnik, Hector Garcia-Molina, and Erhard
Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In
ICDE, 2002.

[18] Thomas M. Mitchell. Machine Learning. McGraw-Hill
Higher Education, 1997.

[19] Sriram Raghavan and Hector Garcia-Molina. Crawling
the hidden web. In VLDB, 2001.

[20] Jiying Wang and Fred H. Lochovsky. Data extraction
and label assignment for web databases. In WWW,
2003.

[21] Jiying Wang, Ji-Rong Wen, Fred Lochovsky, and
Wei-Ying Ma. Instance-based schema matching for
web databases by domain-specific query probing. In
VLDB, 2004.

[22] Ping Wu, Ji-Rong Wen, Huan Liu, and Wei-Ying Ma.
Query selection techniques for efficient crawling of
structured web sources. In ICDE, 2006.

[23] Wensheng Wu, Clement Yu, AnHai Doan, and Weiyi
Meng. An interactive clustering-based approach to
integrating source query interfaces on the deep web. In
SIGMOD, 2004.

[24] Zhen Zhang, Bin He, and Kevin Chen-Chuan Chang.
Understanding web query interfaces: best-effort
parsing with hidden syntax. In SIGMOD, 2004.

