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Abstract  
Objective: To develop a system for the interactive exploration and examination of histology-

derived data associated with breast tumors, which may be used to evaluate the histologic 

grade of the tumor.  

Study Design: The system integrates pathologist-generated prognostic data with 2D image 

analysis data, 2D digital tissue cross-sections and annotations, 3D tumor reconstructions and 

volumetric analysis, 3D spatial tumor display, and recorded prognostic information from 

available cases in the DUCOM tumor databank. The system consists of three components: 1) 

a user interface for applying two-dimensional (2D) image processing, segmentation and 

annotation to a digitized histology slide, 2) a distance field interpolation method for contour-

based three-dimensional (3D) reconstruction of breast tumors, and volumetric model analysis 

routines, 3) a web-based database management interface for interactive data browsing and 

searching, and multi-modality visualization.  

Results: The system has been implemented and deployed with data from 36 breast cancer 

cases, 7 of which have been reconstructed in 3D.  

Conclusion: Interactive visual analytics technology may be used to create an effective breast 

tumor evaluation system. 

 

Keywords: visual analytics, image processing, segmentation, 3D reconstruction, image/model 

analysis, database management, visualization, user interface 
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Introduction 

As part of current standard patient care, pathologist-based evaluation of the specimen and 

tissue slides of a patient diagnosed with breast cancer is considered the gold standard for 

tissue neoplasm assessment and the most accurate method for determining histologic grade 

and pathologic stage. Pathologic findings considered to be of significant prognostic value are 

the tumor size, and histologic type and grade. To assess each finding pathologists perform 

specific tasks such as measuring and sectioning the specimen, measuring the tumor size, 

microscopically examining the H&E stained slides and manually measuring the margins of 

the specimen. In addition, immunohistochemical profiles of breast cancer specific biomarkers 

are produced. As a result multiple prognostic information is generated from each task, but the 

usefulness of the data can be diminished if not visualized and analyzed simultaneously. In 

addition, a histopathology examination is based on manual observation of two dimensional 

tissue slides.  This examination is strongly dependent on observer variation and, the spatial 

focus of observation, and does not normally take into account findings from previous breast 

cancer cases using a systematic quantitatively supported procedure based on the simultaneous 

viewing and analysis of the prior findings.    

This paper presents a visual analytics system for breast tumor evaluation. Visual analytics is 

the science of analytical reasoning supported by an interactive interface that enables diverse 

data visualization and visual information correlation. It is clear that an effective breast tumor 

evaluation system will require the simultaneous consideration of possibly all generated data 

supported by information recorded for previous breast tumor cases, including the outcomes of 

those cases.  

Related research work on breast cancer diagnosis and prognosis has resulted in computer-

assisted systems that mainly focus on data extraction and / or interpretation and / or 

visualization of individual phases / tasks within the entire diagnosis / prognosis process. 

These systems do not simultaneously consider and interactively visualize in parallel the 

diverse information generated for a single patient, in combination with corresponding 

information from previous cases. Street et al.
1
, introduced Xcyt (available for free testing 

online), a software system that provides diagnosis and prognosis of breast cancer based on 

FNA (Fine Needle Aspiration). Xcyt is based entirely on information obtained from 

morphometric analysis of the individual tumor cells, along with the size of the tumor itself. 

Kayser et al.
2
, proposed EAMUS (Electronic Automated Measurement User System), an 

automated image measurement system for immunohistochemically stained slides including 

fluorescence images. EAMUS uses an active stratified sampling method to identify and 

measure objects present in images of immuno-stained slides. In related work Kayser et al.
3
 

show that texture-based analysis may be used to classify normal histological findings and 

several tissue-based diagnoses.  Görtler et al.
4
 contend that tissue-based diagnoses may 

greatly benefit from grid computing technology. Leong et al.
5
, presented a computer-based 

automated histopathology recognition system to distinguish benign from malignant lesions. A 

system for combined three-dimensional morphological and molecular analysis of thick tissue 

samples is proposed by Fernandez-Gonzalez et al.
6
.  This system uses more advanced 

computational techniques and integrates a three-dimensional visualization system with an 

image analysis system. An extended review of proposed and developed systems related to 

breast cancer diagnosis is given in 
7
.  In another medical area, the integrated medical data 

analysis and visualization system 3D Slicer
8
 (open source software) is an advanced tool for 
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brain-surgery planning and guidance using image fusion and an open MRI (Magnetic 

Resonance Imaging). 3D Slicer allows the incorporation of multiple data sets into a single 

display environment and provides capabilities for automatic registration, semiautomatic 

segmentation, 3D surface model generation, 3D visualization, and quantitative analysis of 

various medical scans.   

The system presented in this paper is composed of three modules and uniquely bundles 

multiple available breast cancer data with different aspects of analysis and visualization into a 

single interactive framework. It integrates pathologist-generated prognostic data with 2D 

image analysis data, 2D digital tissue cross-sections and annotations, contour-based surface 

reconstruction, 3D tumor volumetric analysis, 3D spatial tumor display, and recorded 

prognostic information from previous cases.  This paper provides an overview of the system 

by describing the individual modules and illustrating the major steps involved in utilizing it.  

Materials and Data 

This study employs retrospective breast cancer data available in the Department of Pathology 

of Drexel University College of Medicine (DUCOM). The original research was approved by 

the local institutional review board (DUCOM - IRB). Selected data were composed of: a) de-

identified prognostic data corresponding to 324 breast cancer cases; b) 44 hematoxylin & 

eosin (H&E) stained histology slides spanning 7 breast tumors entirely submitted from seven 

different breast cancer patients that had a lumpectomy as a primary form of treatment. 

Prognostic data was comprised of the following information: age, tumor size, tumor stage, 

tubular formation, mitotic rate, nuclear grade, histologic grade, estrogen receptor value, 

progesterone receptor value, Ki67 value, p53 value, and Her2neu value.       

H&E stained histology slides were created as following: a) in two cases, three cross-sections 

were cut for each formalin-fixed (paraffin-embedded) block (top, quarter, and middle); b) in 

the remaining five cases, for each paraffin-fixed block a cross-section slice was cut giving a 

slide per block, thus each block was represented by only one cross-section cut at the top of the 

block. See Figure I-E. Note that each tumor case is comprised of multiple paraffin-embedded 

tissue blocks (Fig.I-B). 

As part of the standard protocol in the department, all breast specimens have been submitted 

entirely using a standardized method. This protocol includes serial sectioning of the specimen 

at 5 mm intervals with consecutive ordering and maintenance of tissue orientation in 6 planes 

(Fig. I-A&B). Paraffin embedded 4µm hematoxylin and eosin stained sections of each block 

have been created and microscopically reviewed to allow classification of the tumor. The 

database includes all types of breast cancer.  For the purpose of this study, only lumpectomy 

cases were considered for the 2D image processing and 3D reconstructions.  

 

Lumpectomy is the form of breast cancer surgery where the part of the breast containing the 

tumor (the "lump") and some of the normal tissue surrounding it is removed. 

Invasive means that the cancer has "invaded" or spread to the surrounding tissue.  

Size is the estimated diameter of the tumor as measured during the tissue preparation. 

The next section provides an overview of the system, with each module described and 

illustrated separately in detail.   
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System overview 

Our visual analytics systems (Figure II) for breast tumor evaluation consists of three major 

components: tissue image digitization and 2D image processing; 3D tumor reconstruction and 

volumetric analysis; and web-based database management and data visualization. 

In the first component, images of serially-cut tumor histology glass slides, representing the 

entire tissue, are automatically acquired and converted to digital images. A user interface is 

utilized to apply 2D image processing, segmentation and annotation in each slide, and to 

organize and pre-process images for 3D reconstruction. Representative regions of interest are 

computationally identified and re-scanned at a higher magnification.  Image analysis is 

applied to these regions in order to extract multiple discriminating features.  In the second 

component, a distance field interpolation method for contour-based 3D-reconstruction is 

applied to the stack of 2D annotated images generated in the first component. This produces a 

3D model with separate structures for each of the segmented tumor regions. Volumetric 

measurements are performed and the 3D tumor reconstructions are interactively visualized.  

In the third component, a web-based database management interface is developed to allow for 

interactive data browsing and searching, and multi-modality visualization of the available 

resources. The following sections provide detailed description and illustrations for each 

component. 

 

Tissue Image Digitization, 2D-Image Processing/Analysis, and Tumor Annotation 

Using the available breast cancer database, de-identified breast cancer data are filtered to 

create a pool of cases that would satisfy the following criteria:  

Pool of Cases ∈ {Lumpectomy → Invasive → 1.00 cm < Size < 4.00 cm} 

A subset of cases is selected from this pool and the associated 2D tumor grossing maps are 

screened to satisfy the grossing pattern shown in Figure I-B; thus providing consistent input to 

the 3D tumor reconstruction process. This pattern indicates that the central portion of the 

specimen containing the tumor is cut only horizontally throughout the vertical axis and the 

entire tissue of cross-sections cut from each paraffin-fixed block is located in one single slide 

each (Figure I-B-D). The available H&E histology slides of the selected cases are 

microscopically reviewed one by one by an expert pathologist to locate the slides that are 

positive for cancer and have no major cracks or holes caused during slide preparation. In 

some cases certain slides are re-cut when the tissue cross-section in the slide is not complete 

or the slide itself is missing from the archive. 

The entire tissue area within the H&E glass slides is then automatically digitized, for each 

stack of serially cut cross-sections, using our motorized histology slide imaging system. This 

system is comprised of a customized Olympus BX60 microscope equipped with a LUDL's 

BioPrecision motorized stage, motorized filter wheel, iris and objectives turret, a high-speed 

acquisition and tiling system (Objective Imaging), which uses a customized PCI card to 

synchronize camera, software and motorized stage, and a Retiga 2000R digital color camera. 

The histology slides are initially scanned using a 2X Olympus PlanApo objective to provide 

an overview of the entire slide and automatically identify the smallest bounding rectangle that 

surrounds the entire tissue area. The coordinates of this bounding rectangle are used to re-scan 
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the non-empty tissue area with a 10X Olympus UPlanApo objective, allowing for the 

visualization of the distribution of cells and tissue structures.  

A Dual-Core Intel Xeon 3.0GHz, 6GB Ram, Windows XP 64-bit Dell Precision workstation 

is used for the image processing and analysis. A prototype user interface is utilized to apply 

2D image processing, segmentation and annotation of tumor-tissue structures in each slide, 

and to organize and pre-process images for 3D reconstruction (Fig. III). As a first step, an 

automated image processing approach previously described by Petushi et al.
9, 10

 is applied to 

each stack of histology images to perform segmentation. The approach is a hybrid method that 

bundles within an automated framework: grayscale conversion, segmentation with adaptive 

thresholding and morphological operations, blob (micro-object) labeling, feature extraction, 

blob identification, and nuclei classification using supervised learning (Fig. IV). This process 

identifies the spatial positions of hundreds of thousands of cell nuclei in three morphology 

groups in a single whole-section image, as well as adipose tissue and extracellular matrix as a 

background. The result is used to estimate the density distributions of the different cell 

morphologies identified earlier. The generated density distribution images are then segmented 

and their morphology and textures are analyzed, using the corresponding original color 

images and cell-level identification results as a reference, to detect higher order tumor tissue 

structures/regions such as: invasive tumor, ductal carcinoma in situ (DCIS), cancerization of 

lobules, fibroadenoma, vessels, necrotic areas, etc. Using the graphical user interface (Fig. III-

A) the identified tumor tissue structures are overlaid on the original corresponding areas, 

enabling manual correction of region boundaries and structure annotation.  

For each tumor case, representative/hot regions of interest (ROI) are computationally 

identified as areas of high cell-concentration and are visually verified. These hot ROIs are re-

scanned at a higher magnification and segmented using the method described in
9, 10,

.  Image 

analysis is then applied in order to extract multiple discriminating-capable features
11, 12

. The 

mean and coefficient of variance for the measurements shown in Table 1 are calculated for 

each ROI. Coefficient of Variation (CoV) is a measure of the dispersion of a probability 

distribution. It is defined as the ratio of the standard deviation σ to the mean µ: CoV = σ / µ.   

Within this module, each stack of H&E stained histology slides is digitized, processed and 

annotated to create the input data for the second component of our method. A flowchart 

representing the data flow from the first to the second module is shown in Figure V. In 

addition cell-level 2D image analysis measurements of representative regions of interest are 

generated and visualized using the third module of this approach. Discriminating capabilities 

and the diagnostic/prognostic value of these 2D image analysis measurements are not within 

the scope of this paper and therefore are not considered here.        

 

3D-Tumor Reconstruction and Volumetric Measurements  

The first component of our visual analytics system produces a set of segmented and classified 

images for each histology scan. See Figure VII (left). The second component of the system 

contains a computational pipeline that produces smooth surface reconstructions from a set of 

parallel binary contours
13

.  Contours are generated from the boundaries of the classified 

regions, and are stored as binary images where white pixels represent the contour curves. The 
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reconstruction process generates an isosurface embedded in a volume dataset by first 

calculating distance fields in the individual 2D slices. Blending slices are computed between 

the input contours via spline interpolation of associated pixels in neighboring input slices. The 

zero isosurface embedded in the resulting volume provides the desired reconstruction. The 

complete computational process contains several stages. The centers of the contour (white) 

pixels are interpreted as points in 2D and a Multi-level Partition of Unity (MPU) implicit 

curve
14

 (i.e. a 2D field whose zero level set is the curve) is approximately fit to these points. 

The narrow band around the MPU curve is swept out by a fast marching method
15

 to produce 

a 2D Euclidean distance field. The medial axis discontinuities inherent in all Euclidean 

distance fields are smoothed with distance-dependent Gaussian filtering
13

. A volume dataset 

is produced via monotonicity-constraining spline interpolation
14

 of pixels across neighboring 

distance fields. We employ this type of spline in order to remove undesirable surface artifacts 

produced by the overshoot normally found in standard splines. A mesh of the isosurface that 

represents the reconstructed surface may then be extracted from the volume
17

. 

Once a 3D model has been constructed it is analyzed to produce a set of 3D shape measures. 

The 3D measures include: surface area, aspect ratio, spherical eccentricity, volume, density, 

and absolute mean curvature per unit area.  Surface area over the final reconstruction is 

calculated by summing the area of the individual triangles in the triangle mesh, which has 

been extracted from the interpolated volume.  The surface area of each triangle is calculated 

by: 

edge1 ⊗ edge2

2
. 

 

The ⊗  operator is the cross product of two vectors defined by two edges (edge1 , edge2) of  

the triangle. Aspect ratio is obtained by first calculating the eigenvalues of the covariance 

matrix derived from vertices of the extracted surface, 
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where n is the number of vertices in the extracted mesh, p  is the centroid of all the vertices, 

and α and β represent the X, Y and Z components of the vertices.  Aspect ratio is calculated 

by dividing the smallest eigenvalue by the largest eigenvalue and indicates if the object is 

elongated.  Eccentricity is calculated as the ratio of an object’s surface area and the area of a 

sphere with the same volume,  
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The volume of a volumetric object is easily approximated by summing the number of voxels 

marked as “inside” the object of interest. Eccentricity provides a measure of the irregularity of 

the object’s shape.  Density is a ratio of the object’s volume and the volume of the bounding 

box surrounding the object. The absolute mean curvature per unit area is calculated by 

summing the absolute value of the mean curvature κ over the surface of the object of interest, 
 

1

Area
κ dS

S
∫  

 

The mean curvature calculation can be performed on the derived volumetric dataset at the 

voxels near the object’s surface with the following function
18

,  
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where φ  is the implicit function stored in the volume dataset and the subscripts denote 

specific partial derivatives.  This quantity provides a measure of the roughness of the object’s 

surface. 
 

Web-based Interface for Visual Analysis and Tumor Evaluation  

The third component of our system provides a Web-based integrated approach to using the 

datasets and images for visual analysis and tumor evaluation.  The integrated interface was 

implemented as a Java Web application based on open source software (Tomcat Application 

server and MYSQL database). Described below are its three major components: an image 

viewing front-end, a back-end data management tool, and a visual analysis tool.  

 

Image Viewing 

A main feature of the system allows the user to view four different types of images: raw 

images, segmented images, 3D moving images (animations), and zoomable high-resolution 

image (Figure VIII). A great deal of data manipulation is needed to provide these image 

views.  For example, to provide a single high-resolution image that can be enlarged to up to 

20x, the system must work with on an average more than 70 Megabytes of image data stored 

in more than 1000 files. A special viewer is required (Currently, we use Zoomifyer EZ viewer 

available from http://www.zoomify.com). Similarly, to view a 3D reconstruction model 

directly would require downloading and processing more than 600 megabytes of data.  This is 

not practical for interactive viewing in the current networked environment.  Thus, we have 

created a QuickTime animation for each case for the 3D displays.  

 All data manipulation happens on the server.  The user only interacts with an easy-to-use 

Web interface that supports various image browsing and searching functions.  For example, 

the user can view a list of thumbnails of all of the cases at a glance, and select an individual 

case to view any of the four image types.  The user can also search a case by patient’s age or 

by tumor size, histologic grade, etc. (Figure IX). 
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Data Management 

The image browsing front-end interacts with a server-based Java application in the back-end 

to provide all the data and images. The data are all stored in a relational database. For each 

case, four types of data are included: metadata, prognostic data, 2D analysis data, and 3D 

analysis data. Furthermore, a separate Web interface is available for data management for the 

system administrators.  The administrators can insert, edit, or delete data through a Web 

browser. They can also upload prognostic or analysis data from Excel files to the database. In 

addition, the administrators also have access to tools for maintaining user accounts for the 

integrated system.  
 
Visual Analysis 

A separate visual analysis tool is provided that allows users to explore relationships between 

independent and dependent variables for the cancer cases in the database. A network model 

for the cases is constructed with the dependent variables shown as nodes. These dependent 

variables represent 9 parameters that are routinely generated and used by pathologist in breast 

cancer diagnosis (see Table 2). Each case is represented internally as a vector of selected 

independent variables. The similarity between two cases is calculated with the cosine 

similarity between the two vectors: 
 

                                    ∑ ∑∑ ×=
= k k

jkikjk

N

k

ik vvvvjiSim
22

1

/),(  

 Where vxy’s are vector coefficients of the corresponding cases. 

 

The edges between the cases depict the degree of similarity between the cases. The 

coordinates of these cases in the network are based on the Kamada-Kawai graph layout 

algorithm
19

. The layout algorithm tends to group similar cases near each other and place 

dissimilar ones further apart. As a result, a cluster of nodes indicates a group of similar cases 

in terms of the selected independent variables.  It becomes even clearer when we apply colors 

to nodes. The colors represent the values of any one of the 9 parameters in Table 2.  For 

example, Tubule Formation in the top row has three levels: 1, 2, and 3. The three levels are 

shown in the visualization with three different node colors, yellow, orange and red. The 

remaining 8 parameters are used to visualize their relations. In the example shown in Figure 

X, the three different node colors represent the three values of the Mitotic Rate and show their 

relation to histological grade. In this visual analysis the 9 prognostic parameters generated by 

pathologists in 324 breast cancer cases are used. Through these visual displays, users can 

explore connections between cases by systematically examining a variety of combinations of 

independent variables and dependent variables. Statistical significance and confidence 

interval analysis is beyond the focus of this paper and thus is not considered here.  

 

 

Conclusions 
 

It is extremely challenging to integrate varied, complex data, such as pathologist-generated 

prognostic data, 2D image analysis data, 2D digital tissue cross-sections and annotations, 3D 

tumor reconstructions and volumetric analysis, etc., with various images, such as raw images, 

segmented images, animations, and zoomable high-resolution images, in a practical system. In 
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this paper, we describe our successful efforts in developing such an integrated system for 

breast tumor visual analysis and evaluation.  We believe that our system will significantly 

improve the environment for the pathologists and cancer researchers who perform tumor 

analysis and exploration at a fine and detailed level.  The combination of 3-D views and a 

high-resolution detail view is particularly powerful. We anticipate many potential applications 

of such a system, including  

  

� computer-based infection detection in soft tissue, 

� integrated tumor prediction system,  

� research study of the pathogenesis of cancer, 

� clinical study to assess sensitivity and specificity of radiologic and imaging techniques 

effectiveness, and 

� models to create better management and treatment algorithms by allowing prediction 

of growth patterns based on the histologic findings on the biopsy. 

 

Additionally, our proposed system could be a very useful module of a larger internet-based 

grid-architecture for tissue-based diagnosis; thus benefiting distributed diagnostic support 

systems in surgical cancer pathology. This kind of system, which incorporates a closed 

feedback loop by integrating prognostic value reported by pathologists and patient outcome 

information obtained from a tumor registry database, would provide a self-trained machine-

learning system that could be used in surgical cancer pathology to predict tumor behavior, 

prognosis, and survival rate. Before a specific hypothesis could be supported or implemented, 

and any predictions made, a statistically significant sample size of tumor cases must be 

accumulated into the database. 

 

Clearly, more research is needed before the system will be widely adopted and used.  

Dataflow between the three components needs to be improved and the overall time required to 

scan a stack of histology glass slides and then produce a 3D reconstructed tumor must also be 

drastically shortened. 
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Figure Legends 

 

Figure I:. A) Model showing the protocol for slicing gross breast lumpectomies: The tissue is oriented 

based on a surgeon’s notation.  The tissue after inking (not shown) is serially sectioned to create 5mm 

slices.  These slices are labeled and consecutively submitted for processing, paraffin embedding and 

slide production; B) Diagram showing 2D map of paraffin-fixed blocks created from the tissue slices 

in A; C) H&E stained histologic slide; D) Paraffin-fixed block of tissue; E) Cross-section sampling 

within a paraffin block  

Figure II: Web-based breast tumor image and data visualization 

Figure III: A) User interface for 2D image processing, segmentation, annotation and pre-processing 

of histology slides for 3D-reconstruction; B) Annotation of 2D histology images of H&E stained tissue 

cross-sections 

Figure IV: Flowchart of automated cell-level processing of a breast cancer histology image. The 

stages include segmentation with adaptive thresholding and domain specific morphological operations, 

blob (micro-object) labeling, feature extraction and selection, and nuclei classification 

Figure V: Flowchart of data generated in the first module to serve as input to the second module (3D 

tumor reconstruction) 

Figure VI: Overview of the volumetric reconstruction process. Input is a set of contours represented 

as binary images. MPU implicit curves are fit to the contours. A Euclidean distance field is generated 

from the narrow band around the implicit curve. The field is filtered to remove medial axis 

discontinuities. The filtered fields are interpolated to produce a volume dataset. A mesh of the zero 

level set is extracted from the volume 

Figure VII:  A breast cancer tumor model (right) constructed from four histology-based 

segmentations (left). The model only includes regions with necrotic (purple) and invasive cancer 

(blue) cells, and the outer specimen membrane 

Figure VIII:  Four types of image views (clockwise): raw image, segmented image, 3D image, and 

high-resolution zoomable image 

Figure IX:  The search interface for the integrated system, PS3.  The user can choose any of the 

criteria listed on the screen to narrow down his/her case selections 

 
Figure X: Network visualization of 345 breast tumor cases based on histologic grade and the three 

individual component of the Nottingham histologic grading system. Node colors correspond to the 3 

levels of mitotic counts  
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Tables 

 

Table 1: Features extracted in 2D   

 Measurement Description 

1 Area Number of white pixels in a segmented object (blob), after hole filling 

2 Clumpiness 
Fraction of pixels deviating from the average remaining after a dilation, 
reflecting texture variations 

3 Darkness 
Fraction of pixels that deviate more than a certain range (20% default) 
from the minimum intensity 

4 Density Red-Blue Red and Blue intensities in a segmented object 

5 Density Red-Blue Min Minimum Red and Blue intensities in a segmented object 

6 Density Blue Max Maximum Blue intensity in a segmented object 

7 Heterogeneity 
Fraction of pixels that deviate more than a certain range (10% default) 
from the average intensity 

8 Number of Holes Number of black holes within a segmented object, before hole filling 

9 Solidity The ratio between the object area and the convex envelope area 

 

 

Table 2: Variables for Tumor Cases  

Tubule Formation 1           2      3 

Nuclear Grade/Pleomorphism 1           2      3 

Mitotic Figure/Count 1           2      3 

BR Grade/Histologic Grade 1           2      3 

ER Negative  Borderline  Positive 

PR Negative  Borderline  Positive 

Ki-67 Low  Borderline   High 

p53 Negative  Borderline  Positive 

Her2neu Negative  Borderline  Positive 
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